Long-range linkage disequilibrium in French beef cattle breeds

GENETICS SELECTION EVOLUTION(2021)

引用 8|浏览0
暂无评分
摘要
Background Linkage disequilibrium (LD) is a key parameter to study the history of populations and to identify and fine map quantitative trait loci (QTL) and it has been studied for many years in animal populations. The advent of new genotyping technologies has allowed whole-genome LD studies in most cattle populations. However, to date, long-range LD (LRLD) between distant variants on the genome has not been investigated in detail in cattle. Here, we present the first comprehensive study of LRLD in French beef cattle by analysing data on 672 Charolais (CHA), 462 Limousine (LIM) and 326 Blonde d’Aquitaine (BLA) individuals that were genotyped on the Illumina BovineHD Beadchip. Furthermore, whole-genome LD and haplotype block structure were analysed in these three breeds. Results We computed linkage disequilibrium ( r 2 ) values for 5.9, 5.6 and 6.0 billion pairs of SNPs on the 29 autosomes of CHA, LIM and BLA, respectively. Mean r 2 values drop to less than 0.1 for distances between SNPs greater than 120 kb. However, for the first time, we detected the existence of LRLD in the three main French beef breeds. In total, 598, 266, and 795 LRLD events ( r 2 ≥ 0.6) were detected in CHA, LIM and BLA, respectively. Each breed had predominantly population-specific LRLD interactions, although shared LRLD events occurred in a number of regions (55 LRLD events were shared between two breeds and nine between the three breeds). Examples of possible functional gene interactions and QTL co-location were observed with some of these LRLD events, which suggests epistatic selection. Conclusions We identified long-range linkage disequilibrium for the first time in French beef cattle populations. Epistatic selection may be the main source of the observed LRLD events, but other forces may also be involved. LRLD information should be accounted for in genome-wide association studies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要