Development Of High-Level Daptomycin Resistance In Abiotrophia And Granulicatella Species Isolates From Patients With Infective Endocarditis

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY(2021)

引用 3|浏览8
暂无评分
摘要
Abiotrophia and Granulicatella species are fastidious organisms, representing the causative agents of;1% to 3% of cases of infective endocarditis (IE). Little is known about the optimal antibiotic treatment for these species, and daptomycin has been suggested as a therapeutic option. We describe the antimicrobial profiles of Abiotrophia and Granulicatella IE isolates, investigate high-level daptomycin resistance (HLDR) development, and evaluate daptomycin activity in combination therapy. In vitro studies with 16 IE strains (6 Abiotrophia defectiva strains, 9 Granulicatella adiacens strains, and 1 G. elegans strain) were performed using microdilution to determine MICs and time-kill methodology to evaluate combination therapy. Daptomycin nonsusceptibility (DNS) (MIC >= 2 mg/liter) and HLDR (MIC >= 256 mg/liter) were based on existing Clinical and Laboratory Standards Institute (CLSI) breakpoints for viridans group streptococci. All isolates were susceptible to vancomycin: G. adiacens was more susceptible to penicillin and ampicillin than A. defectiva (22% versus 0% and 67% versus 33%) but less susceptible to ceftriaxone and daptomycin (56% versus 83% and 11% versus 50%). HLDR developed in both A. defectiva (33%) and G. adiacens (78%) after 24 h of exposure to daptomycin. Combination therapy did not prevent the development of daptomycin resistance with ampicillin (2/3 strains), gentamicin (2/3 strains), ceftriaxone (2/3 strains), or ceftaroline (2/3 strains). Once developed, HLDR was stable for a prolonged time (>3weeks) in G. adiacens, whereas in A. defectiva, HLDR reversed to the baseline MIC at day 10. This study is the first to demonstrate rapid HLDR development in Abiotrophia and Granulicatella species in vitro. Resistance was stable, and most combination therapies did not prevent it.
更多
查看译文
关键词
A. defectiva, G. adiacens, HLDR, daptomycin, synergy, bactericidal activity, in vitro, infective endocarditis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要