Coherent ground-state transport of neutral atoms

PHYSICAL REVIEW A(2022)

引用 6|浏览3
暂无评分
摘要
Quantum state transport is an important way to study the energy or information flow. By combining the unconventional Rydberg pumping mechanism and the diagonal form of van der Waals interactions, we construct a theoretical model via second-order perturbation theory to realize a long-range coherent transport inside the ground-state manifold of neutral atoms systems. With the adjustment of the Rabi frequencies and the interatomic distance, this model can be used to simulate various single-body physics phenomena such as a Heisenberg XX spin chain restricted in the single-excitation manifold, coherently perfect quantum state transfer, the parameter-adjustable Su-Schrieffer-Heeger model, and chiral motion of atomic excitation in a triangle by varying the geometrical arrangement of the three atoms, which effectively avoids the influence of atomic spontaneous emission at the same time. Moreover, the influence of atomic position fluctuation on the fidelity of quantum state transmission is discussed in detail, and the corresponding numerical results show that our work provides a robust and easily implemented scheme for quantum state transport with neutral atoms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要