Metal Organic Framework Derived One-Dimensional Porous Fe/N-Doped Carbon Nanofibers With Enhanced Catalytic Performance

JOURNAL OF HAZARDOUS MATERIALS(2021)

引用 29|浏览9
暂无评分
摘要
The aggregation of metal nanoparticles and collapse of precursor metal organic frameworks (MOFs) structure during the carbonization process largely hamper the catalytic performance of MOFs-derived carbon catalysts. Here, we report hollow and porous one-dimensional Fe/N-doped carbon nanofibers (Fe/NCNFs) for activating peroxymonosulfate (PMS), which was obtained by immobilizing Fe-MIL-101 on polyacrylonitrile (PAN) nanofibers via electrospinning technique followed by pyrolysis. The presence of one-dimensional PAN channel suppresses the agglomeration tendency of metal particles during the carbonisation process of Fe-MIL-101, resulting in a uniform dispersion of nanoparticles and an increase of catalytic active sites. The resultant Fe/NCNFs-9 possesses unique hierarchical architecture, large active surface area, well-dispersed Fe species, and abundant Fe-N active sites. These superiorities contributed to the better catalytic performance of Fe/NCNFs-9 compared with PAN derived carbon (PAN-C-9) and Fe-MIL-101 derived carbon (Fe-C-9). Through a series of inhibitor experiments and electrochemical tests, the radical pathway is dominant on BPA removal with the participation of the non-radical pathway in the multi-sites Fe/NCNFs-9/PMS/BPA system. Surprisingly, this strategy could successfully disperse Fe species and effectively reduce the Fe leaching. This work supplies a novel method to design efficient MOFs-derived carbon catalysts toward micropollutants removal.
更多
查看译文
关键词
Advanced oxidation process, Fe-MIL-101, Fe, N-doped carbon nanofibers, Sulfate radical
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要