Validation of Serpent-SUBCHANFLOW-TRANSURANUS pin-by-pin burnup calculations using experimental data from the Temelín II VVER-1000 reactor

Nuclear Engineering and Technology(2021)

引用 13|浏览8
暂无评分
摘要
This work deals with the validation of a high-fidelity multiphysics system coupling the Serpent 2 Monte Carlo neutron transport code with SUBCHANFLOW, a subchannel thermalhydraulics code, and TRANSURANUS, a fuel-performance analysis code. The results for a full-core pin-by-pin burnup calculation for the ninth operating cycle of the Temelín II VVER-1000 plant, which starts from a fresh core, are presented and assessed using experimental data. A good agreement is found comparing the critical boron concentration and a set of pin-level neutron flux profiles against measurements. In addition, the calculated axial and radial power distributions match closely the values reported by the core monitoring system. To demonstrate the modeling capabilities of the three-code coupling, pin-level neutronic, thermalhydraulic and thermomechanic results are shown as well. These studies are encompassed in the final phase of the EU Horizon 2020 McSAFE project, during which the Serpent-SUBCHANFLOW-TRANSURANUS system was developed.
更多
查看译文
关键词
Monte Carlo neutron transport,Subchannel thermalhydraulics,Fuel-performance analysis,High-fidelity multiphysics,Pin-level burnup,VVER-1000
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要