Qtls For Potato Tuber Resistance To Dickeya Solani Are Located On Chromosomes Ii And Iv

PLANT PATHOLOGY(2021)

引用 6|浏览3
暂无评分
摘要
The goal of this research was to identify quantitative trait loci (QTLs) for potato tuber resistance to the soil- and seedborne bacterium Dickeya solani and for tuber starch content, to study the relationship between these traits. A resistant diploid hybrid of potato, DG 00-270, was crossed with a susceptible hybrid, DG 08-305, to generate the F-1 mapping population. Tubers that were wound-inoculated with bacteria were evaluated for disease severity, expressed as the mean weight of rotted tubers, and disease incidence, measured as the proportion of rotten tubers. Diversity array technology (DArTseq) was used for genetic map construction and QTL analysis. The most prominent QTLs for disease severity and incidence were identified in overlapping regions on potato chromosome IV and explained 22.4% and 22.9% of the phenotypic variance, respectively. The second QTL for disease severity was mapped to chromosome II and explained 16.5% of the variance. QTLs for starch content were detected on chromosomes III, V, VI, VII, VIII, IX, XI, and XII in regions different from the QTLs for soft rot resistance. Two strong and reproducible QTLs for resistance to D. solani on potato chromosomes IV and II might be useful for further study of candidate genes and marker development in potato breeding programmes. The relationship between tuber resistance to bacteria and the starch content in potato tubers was not confirmed by QTL mapping, which makes the selection of genotypes highly resistant to soft rot with a desirable starch content feasible.
更多
查看译文
关键词
Dickeya solani mapping, diploid hybrids of Solanum spp, potato soft rot resistance, starch
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要