Brugada syndrome: current concepts and genetic background

Journal of Human Growth and Development(2021)

引用 3|浏览0
暂无评分
摘要
Brugada syndrome (BrS) is a hereditary clinical-electrocardiographic arrhythmic entity with low worldwide prevalence. The syndrome is caused by changes in the structure and function of certain cardiac ion channels and reduced expression of Connexin 43 (Cx43) in the Right Ventricle (RV), predominantly in the Right Ventricular Outflow Tract (VSVD), causing electromechanical abnormalities. The diagnosis is based on the presence of spontaneous or medicated ST elevation, characterized by boost of the J point and the ST segment ≥2 mm, of superior convexity \"hollow type\" (subtype 1A) or descending rectilinear model (subtype 1B). BrS is associated with an increased risk of syncope, palpitations, chest pain, convulsions, difficulty in breathing (nocturnal agonal breathing) and/or Sudden Cardiac Death (SCD) secondary to PVT/VF, unexplained cardiac arrest or documented PVT/VF or Paroxysmal atrial fibrillation (AF) in the absence of apparent macroscopic or structural heart disease, electrolyte disturbance, use of certain medications or coronary heart disease and fever. In less than three decades since the discovery of Brugada syndrome, the concept of Mendelian heredity has come undone. The enormous variants and mutations found mean that we are still far from being able to concretely clarify a genotype-phenotype relationship. There is no doubt that the entity is oligogenetic, associated with environmental factors, and that there are variants of uncertain significance, especially the rare variants of the SCN5A mutation, with European or Japanese ancestors, as well as a spontaneous type 1 or induced pattern, thanks to gnomAD (coalition) researchers who seek to aggregate and harmonize exome and genome sequencing data from a variety of large scale sequencing projects and make summary data available to the scientific community at large). Thus, we believe that this in depth analytical study of the countless mutations attributed to BrS may constitute a real cornerstone that will help to better understand this intriguing syndrome.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要