High-Order Accurate Direct Numerical Simulation Of Flow Over A Mtu-T161 Low Pressure Turbine Blade

A.S. Iyer,Y. Abe,B.C. Vermeire, P. Bechlars, R.D. Baier,A. Jameson,F.D. Witherden,P.E. Vincent

COMPUTERS & FLUIDS(2021)

引用 9|浏览2
暂无评分
摘要
Reynolds Averaged Navier-Stokes (RANS) simulations and wind tunnel testing have become the go-to tools for industrial design of Low-Pressure Turbine (LPT) blades. However, there is also an emerging interest in use of scale-resolving simulations, including Direct Numerical Simulations (DNS). These could generate insight and data to underpin development of improved RANS models for LPT design. Additionally, they could underpin a virtual LPT wind tunnel capability, that is cheaper, quicker, and more data-rich than experiments. The current study applies PyFR, a Python based Computational Fluid Dynamics (CFD) solver, to fifth-order accurate petascale DNS of compressible flow over a three-dimensional MTU-T161 LPT blade with diverging end walls at a Reynolds number of 200,000 on an unstructured mesh with over 11 billion degrees-of-freedom per equation. Various flow metrics, including isentropic Mach number distribution at mid-span, surface shear, and wake pressure losses are compared with available experimental data and found to be in agreement. Subsequently, a more detailed analysis of various flow features is presented. These include the separation/transition processes on both the suction and pressure sides of the blade, end-wall vortices, and wake evolution at various span-wise locations. The results, which constitute one of the largest and highest-fidelity CFD simulations ever conducted, demonstrate the potential of high-order accurate GPU-accelerated CFD as a tool for delivering industrial DNS of LPT blades. (C) 2021 The Authors. Published by Elsevier Ltd.
更多
查看译文
关键词
Computational fluid dynamics, High-order methods, Direct numerical simulations, Low-Pressure turbines
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要