Validation of in vivo toenail measurements of manganese and mercury using a portable X-ray fluorescence device

JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY(2021)

引用 5|浏览5
暂无评分
摘要
Background and objective Toenail metal concentrations can be used as an effective biomarker for exposure to environmental toxicants. Typically toenail clippings are measured ex vivo using inductively coupled plasma mass spectrometry (ICP-MS). X-ray fluorescence (XRF) toenail metal measurements done on intact toenails in vivo could be used as an alternative to alleviate some of the disadvantages of ICP-MS. In this study, we assessed the ability to use XRF to measure toenail metal concentrations in real-time without having to clip the toenails (i.e., in vivo) in two occupational settings for exposure assessment of manganese and mercury. Materials and methods The portable XRF method used a 3-min in vivo measurement of toenails prior to clipping and was assessed against ICP-MS measurement of toenail clippings taken immediately after the XRF measurement and work history for a group of welders ( n = 16) assessed for manganese exposure and nail salon workers ( n = 10) assessed for mercury exposure. Results and conclusions We identified that in vivo XRF metal measurements were able to discern exposure to manganese in welders and mercury in nail salon workers. We identified significant positive correlations between ICP-MS of clippings and in vivo XRF measures of both toenail manganese ( R = 0.59, p = 0.02) and mercury ( R = 0.74, p < 0.001), as well as between in vivo XRF toenail manganese and work history among the welders ( R = 0.55, p = 0.03). We identified in vivo XRF detection limits to be 0.5 µg/g for mercury and 2.6 µg/g for manganese. Further work should elucidate differences in the timing of exposure using the in vivo XRF method over toenail clippings and modification of measurement time and x-ray setting to further decrease the detection limit. In vivo portable, XRF measurements can be used to effectively measure toenail Mn and Hg in occupational participants in real-time during study visits and at a fraction of the cost.
更多
查看译文
关键词
Medicine/Public Health,general,Epidemiology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要