A Novel Screen For Expression Regulators Of The Telomeric Protein Trf2 Identified Small Molecules That Impair Trf2 Dependent Immunosuppression And Tumor Growth

CANCERS(2021)

引用 5|浏览7
暂无评分
摘要
Simple Summary The telomeric protein TRF2 (Telomeric repeat-binding factor 2) is upregulated in human cancers and associated with poor prognosis. TRF2 oncogenic properties rely on its intrinsic telomere protective role, but also on cell extrinsic effects through immunosuppressive and angiogenic activities. Therefore, targeting TRF2 appears as a promising therapeutic anti-cancer strategy. In this study, we developed a cell-based method to screen for TRF2 inhibitors allowing us to identify two compounds that blunt the TRF2 pro-oncogenic properties in vivo. Telomeric repeat-binding factor 2 (TRF2) is a subunit of the shelterin protein complex, which binds to and protects telomeres from unwanted DNA damage response (DDR) activation. TRF2 expression plays a pivotal role in aging and cancer, being downregulated during cellular senescence and overexpressed during oncogenesis. Cancers overexpressing TRF2 often exhibit a poor prognosis. In cancer cells, TRF2 plays multiple functions, including telomere protection and non-cell autonomous roles, promoting neo-angiogenesis and immunosuppression. We present here an original screening strategy, which enables identification of small molecules that decrease or increase TRF2 expression. By screening a small library of Food and Drug Agency (FDA)-approved drugs, we identified two molecules (AR-A014418 and alexidine center dot 2HCl) that impaired tumor growth, neo-angiogenesis and immunosuppression by downregulating TRF2 expression in a mouse xenograft model. These results support the chemotherapeutic strategy of downregulating TRF2 expression to treat aggressive human tumors and validate this cell-based assay capable of screening for potential anti-cancer and anti-aging molecules by modulating TRF2 expression levels.
更多
查看译文
关键词
TRF2, cancer, aging, cell-based screening assay, neo-angiogenesis, immune suppression
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要