Direct observation of chaotic resonances in optical microcavities

LIGHT-SCIENCE & APPLICATIONS(2021)

引用 14|浏览5
暂无评分
摘要
Optical microcavities play a significant role in the study of classical and quantum chaos. To date, most experimental explorations of their internal wave dynamics have focused on the properties of their inputs and outputs, without directly interrogating the dynamics and the associated mode patterns inside. As a result, this key information is rarely retrieved with certainty, which significantly restricts the verification and understanding of the actual chaotic motion. Here we demonstrate a simple and robust approach to directly and rapidly map the internal mode patterns in chaotic microcavities. By introducing a local index perturbation through a pump laser, we report a spectral response of optical microcavities that is proportional to the internal field distribution. With this technique, chaotic modes with staggered mode spacings can be distinguished. Consequently, a complete chaos assisted tunneling (CAT) and its time-reversed process are experimentally verified in the optical domain with unprecedented certainty.
更多
查看译文
关键词
Micro-optics,Microresonators,Physics,general,Applied and Technical Physics,Atomic,Molecular,Optical and Plasma Physics,Classical and Continuum Physics,Optics,Lasers,Photonics,Optical Devices
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要