A 1.2nW Analog Electrocardiogram Processor Achieving a 99.63% QRS Complex Detection Sensitivity

IEEE Transactions on Biomedical Circuits and Systems(2021)

引用 9|浏览14
暂无评分
摘要
An energy-efficient electrocardiogram (ECG) processor for real-time QRS detection is presented. The proposed algorithm is based on the Pan-Tompkins algorithm and it is implemented in the analog domain leveraging ultra-low power analog electronics biased in subthreshold. Operational transconductance amplifiers with ∼100 mV linear range are used in almost all of the processing blocks, while squaring is performed on current signals. Additionally, instead of adaptive thresholding, a fixed-level thresholding is performed, thereby eliminating the need for additional blocks such as memory and threshold update. The processor is designed in 65 nm TSMC CMOS technology and has a footprint of 0.078 mm 2 . When supplied by a 1 V supply, the processor consumes 1.2 nW. Using the recordings in the MIT-BIH database, the processor achieves an average QRS detection sensitivity of 99.63% and positive predictivity of 99.47%.
更多
查看译文
关键词
Algorithms,Databases, Factual,Electrocardiography,Signal Processing, Computer-Assisted
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要