Multibounce And Subsurface Scattering Of H Atoms Colliding With A Van Der Waals Solid

JOURNAL OF PHYSICAL CHEMISTRY A(2021)

引用 8|浏览1
暂无评分
摘要
We report the results of inelastic differential scattering experiments and full-dimensional molecular dynamics trajectory simulations for 2.76 eV H atoms colliding at a surface of solid xenon. The interaction potential is based on an effective medium theory (EMT) fit to density functional theory (DFT) energies. The translational energy-loss distributions derived from experiment and theory are in excellent agreement. By analyzing trajectories, we find that only a minority of the scattering results from simple single-bounce dynamics. The majority comes from multibounce collisions including subsurface scattering where the H atoms penetrate below the first layer of Xe atoms and subsequently re-emerge to the gas phase. This behavior leads to observable energy-losses as large as 0.5 eV, much larger than a prediction of the binary collision model (0.082 eV), which is often used to estimate the highest possible energy-loss in direct inelastic surface scattering. The sticking probability computed with the EMT-PES (0.15) is dramatically reduced (5 x 10(-6)) if we employ a fulldimensional potential energy surface (PES) based on Lennard-Jones (LJ) pairwise interactions. Although the LJ-PES accurately describes the interactions near the H-Xe and Xe-Xe energy minima, it drastically overestimates the effective size of the Xe atom seen by the colliding H atom at incidence energies above about 0.1 eV.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要