Biomarker responses and histological damage in the gill, liver, and gonad of Cyprinus carpio with benzo(a)pyrene exposure

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH(2021)

引用 5|浏览1
暂无评分
摘要
The risk of polycyclic aromatic hydrocarbon exposure in aquatic organisms is a global concern. In this study, we investigated the toxic effects of different doses of benzo(a)pyrene (BaP) on Cyprinus carpio in microcosms from the following aspects: superoxide dismutase (SOD) and peroxidase (POD) activity, malondialdehyde (MDA) content in the gill, liver, and gonad; glutathione s-transferase (GST), aromatic hydroxylase (AHH), and 7-ethoxyresorufin-O-deethylase (EROD) activity in the liver; and altered tissue and cellular structures of the gill, liver,and gonad. SOD and POD activity in the gill, liver, and gonad increased in low-dose BaP groups and significantly decreased with an increase in BaP. MDA content increased continuously with an increase in BaP in the gill, liver, and gonad. The activity of enzymes related to detoxification, specifically GST, AHH, and EROD, gradually increased in the liver with an increase in BaP. Upon exposure to BaP, gill hypertrophy, bulging, necrosis, and cavitation occurred, gonadal cells became larger, with an increase in pyknotic or vacuolar nuclei, bulging and cavitation of organelles, and cytoplasm leakage, and nuclear membrane lysis was observed in the liver. Collectively, BaP exposure changed the SOD and POD activity in the gill, liver, and gonad of carp with increases in MDA content, increased GST, AHH, and EROD activity in liver, and damaged the tissue and cellular structures of the gill, liver, and gonad, revealing the toxic effects of BaP exposure on carp.
更多
查看译文
关键词
Cyprinus carpio,Benzo(a)pyrene,Toxicity,Biomarkers,Tissue and cellular structure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要