Maternal fluoxetine reduces hippocampal inflammation and neurogenesis in adult offspring with sex-specific effects of periadolescent oxytocin.

Brain, behavior, and immunity(2021)

引用 3|浏览11
暂无评分
摘要
Untreated perinatal depression can have severe consequences for the mother and her children. However, both the efficacy to mothers and safety to exposed infants of pharmacological antidepressants such as selective serotonin reuptake inhibitors (SSRIs), have been questioned. We previously reported that maternal SSRI exposure increased hippocampal IL-1β levels, which may be tied to limited efficacy of SSRIs during the postpartum to the dam but is not yet known whether maternal postpartum SSRIs affect the neuroinflammatory profile of adult offspring. In addition, although controversial, perinatal SSRI exposure has been linked to increased risk of autism spectrum disorder (ASD) in children. Oxytocin (OT) is under investigation as a treatment for ASD, but OT is a large neuropeptide that has difficulty crossing the blood-brain barrier (BBB). TriozanTM is a nanoformulation that can facilitate OT to cross the BBB. Thus, we investigated the impact of maternal postpartum SSRIs and offspring preadolescent OT treatment on adult offspring neuroinflammation, social behavior, and neurogenesis in the hippocampus. Using a model of de novo postpartum depression, corticosterone (CORT) was given in the postpartum to the dam with or without treatment with the SSRI, fluoxetine (FLX) for 21 days postpartum. Offspring were then subsequently treated with either OT, OT + TriozanTM, or vehicle for 10 days prior to adolescence (PD25-34). Maternal FLX decreased hippocampal IL-10 and IL-13 and neurogenesis in both sexes, whereas maternal CORT increased hippocampal IL-13 in both sexes. Maternal CORT treatment shifted the neuroimmune profile towards a more proinflammatory profile in offspring hippocampus, whereas oxytocin, independent of formulation, normalized this profile. OT treatment increased hippocampal neurogenesis in adult males but not in adult females, regardless of maternal treatment. OT treatment increased the time spent with a novel social stimulus animal (social investigation) in both adult male and female offspring, although this effect depended on maternal CORT. These findings underscore that preadolescent exposure to OT can reverse some of the long-lasting effects of postpartum maternal CORT and FLX treatments in the adult offspring. In addition, we found that maternal treatments that reduce (CORT) or increase (FLX) hippocampal inflammation in dams resulted in opposing patterns of hippocampal inflammation in adult offspring.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要