The Goto Kakizaki Rat: Impact Of Age Upon Changes In Cardiac And Renal Structure, Function

PLOS ONE(2021)

引用 8|浏览7
暂无评分
摘要
BackgroundPatients with diabetes are at a high risk for developing cardiac dysfunction in the absence of coronary artery disease or hypertension, a condition known as diabetic cardiomyopathy. Contributing to heart failure is the presence of diabetic kidney disease. The Goto-Kakizaki (GK) rat is a non-obese, non-hypertensive model of type 2 diabetes that, like humans, shares a susceptibility locus on chromosome 10. Herein, we perform a detailed analysis of cardio-renal remodeling and response to renin angiotensin system blockade in GK rats to ascertain the validity of this model for further insights into disease pathogenesis.MethodsStudy 1: Male GK rats along with age matched Wistar control animals underwent longitudinal assessment of cardiac and renal function for 32 weeks (total age 48 weeks). Animals underwent regular echocardiography every 4 weeks and at sacrifice, early (similar to 24 weeks) and late (similar to 48 weeks) timepoints, along with pressure volume loop analysis. Histological and molecular characteristics were determined using standard techniques. Study 2: the effect of renin angiotensin system (RAS) blockade upon cardiac and renal function was assessed in GK rats. Finally, proteomic studies were conducted in vivo and in vitro to identify novel pathways involved in remodeling responses.ResultsGK rats developed hyperglycaemia by 12 weeks of age (p<0.01 c/w Wistar controls). Echocardiographic assessment of cardiac function demonstrated preserved systolic function by 48 weeks of age. Invasive studies demonstrated left ventricular hypertrophy, pulmonary congestion and impaired diastolic function. Renal function was preserved with evidence of hyperfiltration. Cardiac histological analysis demonstrated myocyte hypertrophy (p<0.05) with evidence of significant interstitial fibrosis (p<0.05). RT qPCR demonstrated activation of the fetal gene program, consistent with cellular hypertrophy. RAS blockade resulted in a reduction blood pressure(P<0.05) cardiac interstitial fibrosis (p<0.05) and activation of fetal gene program. No significant change on either systolic or diastolic function was observed, along with minimal impact upon renal structure or function. Proteomic studies demonstrated significant changes in proteins involved in oxidative phosp4horylation, mitochondrial dysfunction, beta-oxidation, and PI3K/Akt signalling (all p<0.05). Further, similar changes were observed in both LV samples from GK rats and H9C2 cells incubated in high glucose media.ConclusionBy 48 weeks of age, the diabetic GK rat demonstrates evidence of preserved systolic function and impaired relaxation, along with cardiac hypertrophy, in the presence of hyperfiltration and elevated protein excretion. These findings suggest the GK rat demonstrates some, but not all features of diabetes induced "cardiorenal" syndrome. This has implications for the use of this model to assess preclinical strategies to treat cardiorenal disease.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要