Reinforcement learning for pursuit and evasion of microswimmers at low Reynolds number

PHYSICAL REVIEW FLUIDS(2022)

引用 11|浏览5
暂无评分
摘要
We consider a model of two competing microswimming agents engaged in a pursue-evasion task within a low-Reynolds-number environment. Agents can only perform simple maneuvers and sense hydrodynamic disturbances, which provide ambiguous (partial) information about the opponent's position and motion. We frame the problem as a zero-sum game: The pursuer has to capture the evader in the shortest time, while the evader aims at deferring capture as long as possible. We show that the agents, trained via adversarial reinforcement learning, are able to overcome partial observability by discovering increasingly complex sequences of moves and countermoves that outperform known heuristic strategies and exploit the hydrodynamic environment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要