Early Myocardial Dysfunction and Benefits of Cardiac Treatment in Young X-Linked Duchenne Muscular Dystrophy Mice

Cardiovascular Drugs and Therapy(2021)

引用 3|浏览1
暂无评分
摘要
Context Duchenne muscular dystrophy (DMD) is associated with a progressive alteration in cardiac function. Objective The aim of this study was to detect early cardiac dysfunction using the high sensitive two-dimensional speckle-tracking echocardiography (2D strain) in mdx mouse model and to investigate the potential preventive effects of the S107 ryanodine receptor (RyR2) stabilizer on early onset of DMD-related cardiomyopathy. Methods and Results Conventional echocardiography and global and segmental left ventricle (LV) 2D strains were assessed in male mdx mice and control C57/BL10 mice from 2 to 12 months of age. Up to 12 months of age, mdx mice showed preserved myocardial function as assessed by conventional echocardiography. However, global longitudinal, radial, and circumferential LV 2D strains significantly declined in mdx mice compared to controls from the 9 months of age. Segmental 2D strain analysis found a predominant alteration in posterior, inferior, and lateral LV segments, with a more marked impairment with aging. Then, mdx mice were treated with S107 in the drinking water at a dose of 250 mg/L using two different protocols: earlier therapy from 2 to 6 months of age and later therapy from 6 to 9 months of age. The treatment with S107 was efficient only when administered earlier in very young animals (from 2 to 6 months of age) and prevented the segmental alterations seen in non-treated mdx mice. Conclusions This is the first animal study to evaluate the therapeutic effect of a drug targeting early onset of DMD-related cardiomyopathy, using 2D strain echocardiography. Speckle-tracking analyses revealed early alterations of LV posterior segments that could be prevented by 4 months of RyR2 stabilization. Graphical abstract
更多
查看译文
关键词
Heart failure, Duchenne muscular dystrophy, Dilated cardiomyopathy, 2D strain, Speckle-tracking echocardiography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要