Excitonic Tonks-Girardeau and charge density wave phases in monolayer semiconductors

PHYSICAL REVIEW B(2022)

引用 3|浏览7
暂无评分
摘要
Excitons in two-dimensional semiconductors provide a novel platform for fundamental studies of many-body interactions. In particular, dipolar interactions between spatially indirect excitons may give rise to strongly correlated phases of matter that so far have been out of reach of experiments. Here we show that excitonic few-body systems in atomically thin transition-metal dichalcogenides confined to a one-dimensional geometry undergo a crossover from a Tonks-Girardeau to a charge density wave regime. To this end, we take into account realistic system parameters and predict the effective exciton-exciton interaction potential. We find that the pair-correlation function contains key signatures of the many-body crossover already at small exciton numbers and show that photoluminescence spectra provide readily accessible experimental fingerprints of these strongly correlated quantum many-body states.
更多
查看译文
关键词
density wave phases,tonks-girardeau
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要