Study On The Assembly Mechanisms And Transport Properties Of Transmembrane End-Charged Cyclic Peptide Nanotubes

Ting Gong,Jianfen Fan

JOURNAL OF CHEMICAL INFORMATION AND MODELING(2021)

引用 1|浏览1
暂无评分
摘要
In this work, two end-charged cyclic peptide nanotubes (CPNTs) embedded in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) were designed to simulate transmembrane ion channels. Density functional theory (DFT) computations at the level of M06-2X/6-31G give different assembling modes of the negatively charged ELWL-CPNT and positively charged RLWL-CPNT as (L-L)(D-L)(D-D)(L-L)(D-D)(L-L)(D-D) and (D-D)(L-L)(D-D)(L-L)(D-D)(L-L)(D-D), respectively. Molecular dynamics (MD) simulations indicate that a charge at a CPNT end obviously affects the structure of the channel water chain and the diffusion behavior of K+. The regions with the highest probability of H-bond defects in the channel water chains are gap5 and gap2 in ELWL/POPE-CPNT and RLWL/POPE-CPNT, respectively. K+ can easily enter either CPNT by desolvation, and behaves more actively in RLWL/POPE-CPNT, shuttling rapidly and frequently between an alpha-plane zone and an adjacent midplane region. Results of this work reveal that a charge at the end of an ionic channel may significantly alter the transport characteristics of the channel.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要