Secondary Ion Chemistry Mediated By Ozone And Acidic Organic Molecules In Iodide-Adduct Chemical Ionization Mass Spectrometry

ANALYTICAL CHEMISTRY(2021)

引用 7|浏览4
暂无评分
摘要
Iodide-adduct chemical ionization mass spectrometry (I-CIMS) is a widely used technique in the atmospheric chemistry community to detect oxygenated volatile organic compounds (OVOCs) in real time. In this work, we report the occurrence of secondary ion chemistry from interactions between a strong oxygen donor (such as O-3 and peracids) and acidic OVOCs (such as carboxylic acids and organic hydroperoxides) in the ion-molecule reaction (IMR) region of I-CIMS. Such interactions can lead to acidic organic molecules (HA or HB) clustering with [IO](-) (e.g., [HA + IO](-)) and dimer adducts ([A + B + I](-)), in addition to the well-known iodide clusters ([HA + I](-)). This ion chemistry was probed using common chemical standards as well as the gas-phase oxidation products of alpha-pinene and isoprene in a flowtube reactor. The results show that secondary ion chemistry can lead to misinterpretations of molecular compositions and distributions of the gas-phase products and an overestimation of the elemental O/C ratio overall. Nevertheless, the varying degrees of signal change in response to the secondary ion chemistry might be a clue to inform OVOCs' functionalities. Specifically, in the alpha-pinene ozonolysis system, the extents of ion signal reduction in the presence of additional acids in the IMR suggest that C9H14O4 produced in the gas phase is a peracid, rather than the often-assumed pinic acid. Thus, we suggest that the potential application of the secondary ion chemistry to inform organic functionalities is promising, which could help better understand the molecular compositions of gas-phase OVOCs and the reaction mechanisms therein.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要