Herbivore-Induced And Constitutive Volatiles Are Controlled By Different Oxylipin-Dependent Mechanisms In Rice

PLANT CELL AND ENVIRONMENT(2021)

引用 8|浏览8
暂无评分
摘要
Despite the importance of volatile organic compounds (VOCs) for plants, control mechanisms for their basal and stress-induced biosynthesis and release remain unclear. We sampled and characterized headspace and internal leaf volatile pools in rice (Oryza sativa), after a simulated herbivory treatment, which triggers an endogenous jasmonate burst. Certain volatiles, such as linalool, were strongly upregulated by simulated herbivory stress. In contrast, other volatiles, such as beta-caryophyllene, were constitutively emitted and fluctuated according to time of day. Transcripts of the linalool synthase gene transiently increased 1-3 h after exposure of rice to simulated herbivory, whereas transcripts of caryophyllene synthase peaked independently at dawn. Unexpectedly, although emission and accumulation patterns of rice inducible and constitutive VOCs were substantially different, both groups of volatiles were compromised in jasmonate-deficient hebiba mutants, which lack the allene oxide cyclase (AOC) gene. This suggests that rice employs at least two distinct oxylipin-dependent mechanisms downstream of AOC to control production of constitutive and herbivore-induced volatiles. Levels of the JA precursor, 12-oxo-phytodienoic acid (OPDA), were correlated with constitutive volatile levels suggesting that OPDA or its derivatives could be involved in control of volatile emission in rice.
更多
查看译文
关键词
Diurnal regulation, herbivory, oxylipins, plant volatiles, rice (Oryza sativa)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要