Optimal Protamine Dosing After Cardiopulmonary Bypass: The Prodose Adaptive Randomised Controlled Trial

PLOS MEDICINE(2021)

引用 18|浏览3
暂无评分
摘要
Background The dose of protamine required following cardiopulmonary bypass (CPB) is often determined by the dose of heparin required pre-CPB, expressed as a fixed ratio. Dosing based on mathematical models of heparin clearance is postulated to improve protamine dosing precision and coagulation. We hypothesised that protamine dosing based on a 2-compartment model would improve thromboelastography (TEG) parameters and reduce the dose of protamine administered, relative to a fixed ratio.Methods and findings We undertook a 2-stage, adaptive randomised controlled trial, allocating 228 participants to receive protamine dosed according to a mathematical model of heparin clearance or a fixed ratio of 1 mg of protamine for every 100 IU of heparin required to establish anticoagulation pre-CPB. A planned, blinded interim analysis was undertaken after the recruitment of 50% of the study cohort. Following this, the randomisation ratio was adapted from 1:1 to 1:1.33 to increase recruitment to the superior arm while maintaining study power. At the conclusion of trial recruitment, we had randomised 121 patients to the intervention arm and 107 patients to the control arm. The primary endpoint was kaolin TEG r-time measured 3 minutes after protamine administration at the end of CPB. Secondary endpoints included ratio of kaolin TEG r-time pre-CPB to the same metric following protamine administration, requirement for allogeneic red cell transfusion, intercostal catheter drainage at 4 hours postoperatively, and the requirement for reoperation due to bleeding. The trial was listed on a clinical trial registry (ClinicalTrials.gov Identifier: NCT03532594). Participants were recruited between April 2018 and August 2019. Those in the intervention/model group had a shorter mean kaolin r-time (6.58 [SD 2.50] vs. 8.08 [SD 3.98] minutes; p = 0.0016) post-CPB. The post-protamine thromboelastogram of the model group was closer to pre-CPB parameters (median pre-CPB to post-protamine kaolin r-time ratio 0.96 [IQR 0.78-1.14] vs. 0.75 [IQR 0.57-0.99]; p < 0.001). We found no evidence of a difference in median mediastinal/pleural drainage at 4 hours postoperatively (140 [IQR 75-245] vs. 135 [IQR 94-222] mL; p = 0.85) or requirement (as a binary outcome) for packed red blood cell transfusion at 24 hours postoperatively (19 [15.8%] vs. 14 [13.1%] p = 0.69). Those in the model group had a lower median protamine dose (180 [IQR 160-210] vs. 280 [IQR 250-300] mg; p < 0.001). Important limitations of this study include an unblinded design and lack of generalisability to certain populations deliberately excluded from the study (specifically children, patients with a total body weight >120 kg, and patients requiring therapeutic hypothermia to <28C).Conclusions Using a mathematical model to guide protamine dosing in patients following CPB improved TEG r-time and reduced the dose administered relative to a fixed ratio. No differences were detected in postoperative mediastinal/pleural drainage or red blood cell transfusion requirement in our cohort of low-risk patients.Trial registration ClinicalTrials.gov Unique identifier NCT03532594.Author summaryWhy was this study done?Mathematical models of heparin clearance have been postulated to reduce protamine dosing after cardiopulmonary bypass (CPB) and may improve clotting after cardiac surgery. Best practice guidelines have been unable to provide firm recommendations for the use of these models due to a lack of randomised clinical trial data. The PRODOSE trial was designed to address this gap in the evidence.What did the researchers do and find?We tested a mathematical model designed to calculate a bespoke protamine dose in patients undergoing cardiac surgery with CPB who were at a relatively low risk of bleeding, comparing it to a fixed dose ratio that is currently used widely (1 mg of protamine for every 100 IU of heparin given to establish safe anticoagulation before CPB, commonly known as a 1:1 fixed dose ratio). We found that using this mathematical model improved point-of-care measures of coagulation and reduced the amount of protamine given by 36.6% relative to the 1:1 fixed dose ratio. We did not find a difference in postoperative bleeding or use of blood products between the groups. However, as this is a Phase II trial, the study was not designed to accurately assess clinical outcomes, with an emphasis instead on safety and biochemical efficacy.What do these findings mean?Our findings suggest that mathematical models of heparin clearance can be safely used to dose protamine in the population studied and that dosing protamine according to the commonly used 1:1 fixed dose ratio is probably excessive in this population. Clinicians could consider using PRODOSE or similar models in patients at lower risk of bleeding after cardiac surgery in place of a 1:1 fixed dose ratio. Further research with a focus on clinical outcomes and a population at a higher risk of bleeding is warranted.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要