Sacrificial Zno Nanorods Drive N And O Dual-Doped Carbon Towards Trifunctional Electrocatalysts For Zn-Air Batteries And Self-Powered Water Splitting Devices

CATALYSIS SCIENCE & TECHNOLOGY(2021)

引用 7|浏览1
暂无评分
摘要
Integrated energy systems (IES) have attracted increasing attention in recent years. Zn-air battery powered water splitting devices require the development of highly active and durable trifunctional electrocatalysts for the oxygen evolution, oxygen reduction, and hydrogen evolution reactions (OER/ORR/HER). However, engineering rational nano-scaled designs and achieving the required synergy are major challenges due to the lack/weak control of synthesis processes. Herein, ZIF-67 regular polyhedra were fabricated for the first time to incorporate single ZnO nanorods. Thereafter, pyrolysis sacrificed the nanorods and stimulated intriguing modifications on the ZnONR@ZIF-67-derived CoOx@N, O-doped hierarchical carbon (CoOx@NOC), not only from the outside-in, but also from the inside out. Consequently, an outstanding enhancement in OER/ORR/HER trifunctional activity was achieved. The CoOx@NOC based Zn-air battery showed a small initial charge-discharge voltage gap of 92 mV at 10 mA cm(-2) and a high specific capacity and maximum power density of 757.39 mA h g(Zn)(-1) and 141.65 mW cm(-2), respectively. A CoOx@NOC-based all-solid-state Zn-air battery (SS ZAB) was fabricated, which showed a high open circuit potential of 1.49 V. Two SS ZABs in series drove an overall water splitting system, which showed an intriguingly low potential of 1.51 V at 10 mA cm(-2), surpassing most reported electrocatalysts. Thus, the excellent performance of CoOx@NOC implies its great potential to compete with noble metal electrocatalysts.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要