Effect Of Dynamic Low Dres From Flare Combustion On Regional Ozone Pollution During A Chemical Plant Shutdown

ATMOSPHERIC ENVIRONMENT(2021)

引用 3|浏览2
暂无评分
摘要
The destruction and removal efficiencies (DREs) for industrial flare combustion could be, in reality, less than the supposed standard values of 98%/99% because of various atmospheric and plant operating conditions. Thus, flaring during chemical plant shutdown (CPS) under low DREs would release larger quantities of VOCs and NOx than expected, which might rapidly worsen the regional ozone pollution under solar radiation. Therefore, it is vital to examine the quantity and sensitivity of ozone impacts owing to low DREs for flare combustion rather than standard values. In this paper, effect of dynamic low DREs on regional ozone impacts during CPS flaring has been systematically conducted by coupling Aspen Plus with CAMx modeling and simulation. Case studies indicated that 8-hr ozone caused by CPS flaring under low DREs could range from 6.08 to 7.28 ppb, which was much greater than that based on the standard DREs ranging from 1.8 to 2.19 ppb. This study also demonstrated that the 8-hr ozone increment could be significantly reduced from the maximum of 6.14 ppb to the minimum of 0.85 ppb by starting the CPS operations at the optimal time. Another important finding was that ozone impacts might slightly increase with the increase of flare stack height due to meteorological conditions including high wind speed and strong solar radiation. This study would provide scientific support for quantitative ozone evaluation caused by CPS flare emissions, which will enrich future solutions for cost-effective regional air-quality management and ozone pollution control.
更多
查看译文
关键词
Chemical plant shutdown, Ozone pollution, Flare emissions, DRE, CAMx, Aspen Plus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要