Size Of Ceria Particles Influences Surface Hydroxylation And Hydroxyl Stability

JOURNAL OF PHYSICAL CHEMISTRY C(2021)

引用 11|浏览0
暂无评分
摘要
Understanding the surface chemistry of ceria nanoparticles in a water environment is of fundamental interest for several research fields and notably in catalysis and biology/biochemistry. Particularly, regarding pro- and antioxidant activity, the size of the ceria nanoparticle plays a critical role. Large ceria particles (>5 nm) usually cause oxidative distress, resulting in the formation of reactive oxygen species, whereas small particles (<5 nm) act as reactive oxygen scavengers. It is generally believed that the activity depends on the Ce3+/Ce4+ ratio. However, biological reactions typically happen in aqueous media at room temperature, so other hypotheses were considered, in particular the degree of surface hydroxylation. By means of ambient pressure X-ray phototelectron spectroscopy, we demonstrate that Ce4+ does not reduce up to 300 degrees C. The surface concentration and thermal stability of hydroxyl groups correlate with the size of ceria nanoparticles. In particular, small ceria nanoparticles (<5 nm diameter) show a higher hydroxyl group density than larger ones. Finally, hydroxyl groups are thermally more stable on small ceria particles compared to large ones.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要