Nanomagnonics With Artificial Spin Ice

PHYSICS LETTERS A(2021)

引用 32|浏览2
暂无评分
摘要
Traditional electronics employs charge currents to control and transmit information and therefore suffer from energy dissipation due to electron scattering. In the past decade, spin waves (magnons) have been discussed as a more efficient alternative. An important aspect of computing based on magnons is the resonant dynamics' reconfigurability. From this end, nanomagnonics with artificial spin ice offers a wealth of possibilities to control the dynamics. This perspective article reviews experimental and theoretical works on the resonant excitations in the GHz frequency range in artificial spin ice, promising for realizing functional magnonic devices. We discuss both the theoretical formulation and experimental methods to characterize the dynamics in the nanomagnetic arrays. The central part of this perspective is devoted to recent developments targeting full control of the dynamics based on the reprogrammability of the spin-ice microstate with the ultimate goal to realize novel functional devices for logics, computation, and storage concepts based on magnons. (C) 2021 Published by Elsevier B.V.
更多
查看译文
关键词
Magnonics, Nanomagnetism, Artificial spin ice, Spin dynamics, Magnons
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要