CWRF downscaling and understanding of China precipitation projections

CLIMATE DYNAMICS(2021)

引用 7|浏览9
暂无评分
摘要
The regional Climate-Weather Research and Forecasting model (CWRF) was used to downscale the NCAR Community Climate System Model V4.0 (CCSM4) projection of China precipitation changes from the present (1974–2005) to future (2019–2050) under the high emission scenario RCP8.5. The CWRF downscaling at 30-km improved CCSM4 in capturing observed key precipitation spatiotemporal characteristics, correcting rainband dislocations, seasonal-mean biases, extreme-rainfall underestimates and rainy-day overestimates. For the future, CWRF generally reduced CCSM4 projected changes in magnitude, producing still significant increases mostly in summer for mean precipitation in the Northeast, North China and Southwest and for extreme precipitation in North China, South China and the Southwest. These regional precipitation increases were direct responses to enhanced ascending motions and moisture transports from adjacent oceans as the east Asian jet shrunk westward and the Hadley circulation widened northward under global warming. The identification of such robust physical mechanisms added confidence in the CWRF downscaled regional precipitation changes. Furthermore, the CWRF downscaling corrections were systematically carried from the present into future, accounting for projection uncertainties up to 40%. Regional biases, however, could not be simply removed from projected changes because their correspondences were strongly nonlinear, highlighting CWRF’s ability to project more reliable changes by reducing model structural uncertainties.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要