Rational Compatibility In A Ternary Matrix Enables All-Small-Molecule Organic Solar Cells With Over 16% Efficiency

ENERGY & ENVIRONMENTAL SCIENCE(2021)

引用 122|浏览6
暂无评分
摘要
How to manipulate the phase separation and molecular arrangement to meet the need of efficient charge generation and extraction remains a long-standing challenge in all-small-molecule organic solar cells (ASM-OSCs). Herein, a small molecule acceptor Y7 as a morphology modulator was incorporated into a B1:BO-4Cl matrix to fabricate ternary ASM-OSCs. Y7 possesses excellent compatibility with the acceptor BO-4Cl but poor compatibility with the donor B1. The two acceptors prefer to form an alloy-like structure in ternary blends due to their good compatibility, which is conducive to fine-tuning the molecular arrangement for facilitating charge extraction. The inferior compatibility originating from the strong intermolecular interaction between Y7 and B1 can provide a driving force to manipulate the phase separation between the donor and acceptor for gaining well-formed nanofibrous and bi-continuous interpenetrating networks, leading to efficient charge separation, transport and collection in ternary blends. The ternary ASM-OSCs with 10 wt% Y7 in acceptors achieve a top-ranked power conversion efficiency of 16.28% with a holistic improvement of short-circuit current density, open-circuit voltage and fill factor. This work opens a new avenue to optimize the morphology for further boosting the performance of OSCs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要