Modeling And Simulation Of Ultrahigh Sensitive Algan/Aln/Gan Hemt-Based Hydrogen Gas Detector With Low Detection Limit

IEEE SENSORS JOURNAL(2021)

引用 10|浏览0
暂无评分
摘要
Presented through this work is a steady state analytical model of the GaN HEMT based gas detector. GaN with high chemical and thermal stability provides promises for detectors in hazardous environments. However, HEMT sensor resolution must be improved to develop high precision gas sensors for automotive and space applications. The proposed model aids in systematical study of the sensor performance and prediction of sensitivities. The linear relation of threshold voltage shift at thermal equilibrium is used in predicting the sensor response. Numerical model for the reaction rates and the electrical dipole at the adsorption sites at the surface and metal/semiconductor interface have been developed and the sensor performance is analyzed for various gas concentrations. The validation of the model has been achieved through surface and interfacial charge adsorption-based gate electrode work function, Schottky barrier, 2DEG and threshold voltage deduction using MATLAB and SILVACO ATLAS TCAD. Further the applicability of g(d)(channel conductance) as gas sensing metric is also presented. With high ID and gd percentile sensitivities of 118.5% and 92% for 10 ppm hydrogen concentration. The sensor shows capability for detection in sub-ppm levels by exhibiting a response of 0.043% for 0.01ppm (10 ppb) hydrogen concentration. The detection limit of the sensor (1% sensitivity) presented here is 169 ppb and the device current increases by 34.2 mu A for 1ppb hydrogen concentration.
更多
查看译文
关键词
Sensors, HEMTs, Gas detectors, Hydrogen, Mathematical model, Wide band gap semiconductors, Logic gates, AlGaN, GaN HEMT, gas sensor, numerical model, hydrogen, TCAD
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要