A novel all-trans retinoic acid derivative regulates cell cycle and differentiation of myelodysplastic syndrome cells by USO1.

European journal of pharmacology(2021)

引用 1|浏览7
暂无评分
摘要
4-Amino-2-Trifluoromethyl-Phenyl Retinate (ATPR), a novel all-trans retinoic acid (ATRA) derivative, has been demonstrated that it had a variety of anti-tumor effects by exerting regulation on cellular proliferation, apoptosis and differentiation. Here, we found that ATPR is critical for alleviating myelodysplastic syndrome (MDS) and acute myelogenous leukemia. USO1, vesicle transport factor, belongs to tether protein family and involved in endoplasmic reticulum to Golgi trafficking of protein which is important to tumorigenesis. How USO1 contribute to MDS remain elusive. USO1 is aberrantly activated in MDS and AML in vivo and vitro, aberration of which might be a dominant mechanism for MDS cell survival. During the ATPR-induced remission of MDS, in vitro, USO1 presents a time and concentration-dependent decrease. Silencing of USO1 promotes myeloid differentiation of MDS cells and inhibits MDS cellular proliferation while USO1 over-expression has the opposite effect, suggesting that reduction of USO1 enhances the sensitivity of SKM-1 cells to ATPR treatment. Mechanistically, USO1 exerts its oncogenic role by inactivating Raf/ERK signaling, while ATPR is access to revise it. Notably, the activity of Raf/ERK pathway is required for the development and maintenance of MDS cell proliferation. Collectively, our results demonstrate the USO1- Raf/ERK signaling axis in MDS and highlight the negative role of USO1 in ATPR-regulated remission of MDS.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要