Quantitative Toxicity Prediction via Meta Ensembling of Multitask Deep Learning Models.

ACS omega(2021)

引用 17|浏览10
暂无评分
摘要
Toxicity prediction using quantitative structure-activity relationship has achieved significant progress in recent years. However, most existing machine learning methods in toxicity prediction utilize only one type of feature representation and one type of neural network, which essentially restricts their performance. Moreover, methods that use more than one type of feature representation struggle with the aggregation of information captured within the features since they use predetermined aggregation formulas. In this paper, we propose a deep learning framework for quantitative toxicity prediction using five individual base deep learning models and their own base feature representations. We then propose to adopt a meta ensemble approach using another separate deep learning model to perform aggregation of the outputs of the individual base deep learning models. We train our deep learning models in a weighted multitask fashion combining four quantitative toxicity data sets of LD50, IGC50, LC50, and LC50-DM and minimizing the root-mean-square errors. Compared to the current state-of-the-art toxicity prediction method TopTox on LD50, IGC50, and LC50-DM, that is, three out of four data sets, our method, respectively, obtains 5.46, 16.67, and 6.34% better root-mean-square errors, 6.41, 11.80, and 12.16% better mean absolute errors, and 5.21, 7.36, and 2.54% better coefficients of determination. We named our method QuantitativeTox, and our implementation is available from the GitHub repository https://github.com/Abdulk084/QuantitativeTox.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要