Anomalous Loss of Stiffness with Increasing Reinforcement in a Photo-Activated Nanocomposite.

MACROMOLECULAR RAPID COMMUNICATIONS(2021)

引用 0|浏览5
暂无评分
摘要
Hydrogels are commonly doped with stiff nanoscale fillers to endow them with the strength and stiffness needed for engineering applications. Although structure-property relations for many polymer matrix nanocomposites are well established, modeling the new generation of hydrogel nanocomposites requires the study of processing-structure-property relationships because subtle differences in chemical kinetics during their synthesis can cause nearly identical hydrogels to have dramatically different mechanical properties. The authors therefore assembled a framework to relate synthesis conditions (including hydrogel and nanofiller mechanical properties and light absorbance) to gelation kinetics and mechanical properties. They validated the model against experiments on a graphene oxide (GO) doped oligo (ethylene glycol) diacrylate (OEGDA), a system in which, in apparent violation of laws from continuum mechanics, doping can reduce rather than increase the stiffness of the resulting hydrogel nanocomposites. Both model and experiment showed a key role light absorbance-dominated gelation kinetics in determining nanocomposite mechanical properties in conjunction with nanofiller reinforcement, with the nanofiller's attenuation of chemical kinetics sometimes outweighing stiffening effects to explain the observed, anomalous loss of stiffness. By bridging the chemical kinetics and mechanics of nanocomposite hydrogels, the authors' modeling framework shows promise for broad applicability to design of hydrogel nanocomposites.
更多
查看译文
关键词
gelation kinetics, micromechanics, nanocomposite hydrogels, photo-activated nanocomposites
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要