Cocaine Augments Dopamine-Mediated Inhibition Of Neuronal Activity In The Dorsal Bed Nucleus Of The Stria Terminalis

JOURNAL OF NEUROSCIENCE(2021)

引用 12|浏览3
暂无评分
摘要
The dorsal region of the bed nucleus of the stria terminalis (dBNST) receives substantial dopaminergic input which overlaps with norepinephrine input implicated in stress responses. Using ex vivo fast scan cyclic voltammetry in male C57BL6 mouse brain slices, we demonstrate that electrically stimulated dBNST catecholamine signals are of substantially lower magnitude and have slower uptake rates compared with caudate signals. Dopamine terminal autoreceptor activation inhibited roughly half of the catecholamine transient, and noradrenergic autoreceptor activation produced an similar to 30% inhibition. Dopamine transporter blockade with either cocaine or GBR12909 significantly augmented catecholamine signal duration. We optogenetically targeted dopamine terminals in the dBNST of transgenic (TH:Cre) mice of either sex and, using ex vivo whole-cell electrophysiology, we demonstrate that optically stimulated dopamine release induces slow outward membrane currents and an associated hyperpolarization response in a subset of dBNST neurons. These cellular responses had a similar temporal profile to dopamine release, were significantly reduced by the D2/D3 receptor antagonist raclopride, and were potentiated by cocaine. Using in vivo fiber photometry in male C57BL/6 mice during training sessions for cocaine conditioned place preference, we show that acute cocaine administration results in a significant inhibition of calcium transient activity in dBNST neurons compared with saline administration. These data provide evidence for a mechanism of dopamine-mediated cellular inhibition in the dBNST and demonstrate that cocaine augments this inhibition while also decreasing net activity in the dBNST in a drug reinforcement paradigm.
更多
查看译文
关键词
BNST, cocaine, dopamine, electrophysiology, fiber photometry, voltammetry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要