Plasmonic Spin-Hall Effect Of Propagating Surface Plasmon Polaritons In Ni80fe20 Microstructures

NEW JOURNAL OF PHYSICS(2021)

引用 1|浏览3
暂无评分
摘要
Photoexcitation and shaping of a propagating surface plasmon polariton (SPP) on silver and gold microstructures are well established and lead to the discovery of the plasmonic spin-Hall effect recently. Whereas silver is often the material of choice due to its exceptional low plasma frequency and weak damping, similar observations have not been reported for ferromagnetic metals. In this work, we report on propagating SPPs on Ni80Fe20 microstructures imaged by photoemission electron microscopy (PEEM) in combination with a tunable femtosecond laser system at MHz repetition rate. Circular dichroic (CD) images in threshold PEEM show clear edge-induced SPPs with sub-micrometer wavelength and propagation length of about 3.5 mu m. Analysis of the interference patterns as well as the coupling of the optical spin angular momentum to the observed fringe fields reveal propagation characteristics exclusive to evanescent waves and the presence of the plasmonic spin-Hall effect. Our work provides direct evidence that many materials with a high plasma frequency allow for excitation and observation of propagating SPPs at the dielectric/metal interface via CD PEEM imaging, enabling magnetoplasmonic investigation of common ferromagnets on nanometer length and femtosecond time scales.
更多
查看译文
关键词
PEEM, SPP, plasmonic, magnetoplasmonic, dichroism, photoemission, permalloy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要