Treatment of atrial fibrillation with doxapram: TASK-1 potassium channel inhibition as a novel pharmacological strategy

CARDIOVASCULAR RESEARCH(2022)

引用 17|浏览19
暂无评分
摘要
Translational perspective Pharmacological suppression of atrial TASK-1 potassium currents prolongs atrial refractoriness with no effects on ventricular repolarization, resulting in atrial-specific class-III antiarrhythmic effects. In our preclinical pilot study, the respiratory stimulant doxapram was successfully administered for cardioversion of acute AF as well as rhythm control of persistent AF in a clinically relevant porcine animal model. Aims TASK-1 (K(2P)3.1) two-pore-domain potassium channels are atrial-specific and significantly up-regulated in atrial fibrillation (AF) patients, contributing to AF-related electrical remodelling. Inhibition of TASK-1 in cardiomyocytes of AF patients was shown to counteract AF-related action potential duration shortening. Doxapram was identified as a potent inhibitor of the TASK-1 channel. In this study, we investigated the antiarrhythmic efficacy of doxapram in a porcine model of AF. Methods and results Doxapram successfully cardioverted pigs with artificially induced episodes of AF. We established a porcine model of persistent AF in domestic pigs via intermittent atrial burst stimulation using implanted pacemakers. All pigs underwent catheter-based electrophysiological investigations prior to and after 14 days of doxapram treatment. Pigs in the treatment group received intravenous administration of doxapram once per day. In doxapram-treated AF pigs, the AF burden was significantly reduced. After 14 days of treatment with doxapram, TASK-1 currents were still similar to values of sinus rhythm animals. Doxapram significantly suppressed AF episodes and normalized cellular electrophysiology by inhibition of the TASK-1 channel. Patch-clamp experiments on human atrial cardiomyocytes, isolated from patients with and without AF could reproduce the TASK-1 inhibitory effect of doxapram. Conclusion Repurposing doxapram might yield a promising new antiarrhythmic drug to treat AF in patients.
更多
查看译文
关键词
Antiarrhythmic pharmacotherapy, Arrhythmia, Atrial fibrillation, Doxapram, Electrical remodelling, Potassium channel, Rhythm control, TASK-1
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要