Kinetically Interlocking Multiple-Units Polymerization Of Dna Double Crossover And Its Application In Hydrogel Formation

MACROMOLECULAR RAPID COMMUNICATIONS(2021)

引用 12|浏览3
暂无评分
摘要
A novel kinetically interlocking multiple-units (KIMU) supramolecular polymerization system with DNA double crossover backbone is designed. The rigidity of DX endows the polymer with high molecular weight and stability. The observed concentration of the formed polymers is insensitive and stable under ultralow monomer concentration owing to the KIMU interactions, in which multiple noncovalent interactions are connected by the phosphodiester bonds. Furthermore, a pH-responsive DNA supramolecular hydrogel is constructed by introducing a half i-motif domain into the DNA monomer. The rigidity of DNA polymer endows the hydrogel with high mechanical strength and low gelation concentration. This study enriches the KIMU strategy and offers a simple but effective way to fabricate long and stable supramolecular polymers by balancing the reversibility and stability. It also shows great potentials to construct next generation of smart materials, such as DNA nanostructures, DNA motors, and DNA hydrogels.
更多
查看译文
关键词
DNA double crossover, DNA hydrogels, kinetically interlocking multiple units, rigidity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要