Increased Bst-2 Expression By Hbv Infection Promotes Hbv-Associated Hcc Tumorigenesis

JOURNAL OF GASTROINTESTINAL ONCOLOGY(2021)

引用 2|浏览6
暂无评分
摘要
Background: The majority of hepatocellular carcinoma (HCC) is closely associated with hepatitis B virus (HBV) infection, while the mechanism of HCC induced by HBV is debatable. Bone marrow stromal cell antigen 2 (BST-2), an N-glycoprotein, has been characterized as an oncogenic factor in several types of cancer. However, whether BST-2 plays an important role in HCC tumorigenesis remains unknown.Methods: A total of 182 HCC tumorous and adjacent nontumor liver tissues were collected. HepG2, Huh7, L02, HepAD38, and HEK293T cell lines were adopted in this study. Tumor proliferation was detected by CCK8, transwell, wound healing, colony formation assays in vitro, and in vivo tumorigenesis was measured by mouse xenografts. NF-kappa B activation was determined by luciferase assay and Western blot. Protein expression was detected by Western blot, ELISA, or qPCR. Immunoprecipitation was used to confirm the interaction between BST-2 and Syk.Results: Here, we observed the higher BST-2 expression in HBV-infected HCC than their paired adjacent tissues and HBV-uninfected HCC tissues, particularly more aberrant non-N-glycosylated BST-2 in HBV-infected HCC tumors. We also observed the increased ER degradation- enhancing alpha-mannosidase-like protein 3 (EDEM3), which is trimming of N-linked glycans by sequential removal of mannose residues, might result in more non-N-glycosylated form of BST-2. Moreover, we demonstrated that BST-2 and non-N-glycosylated BST-2 N65/92A mutant, not only enhanced the tumor characteristics of hepatoma cell lines in vitro, but also enhanced the growth of mouse xenografts in vivo. Mechanically, N65/92A mutant has stronger ability to promote HCC than BST-2 via NF-kappa B/ERK1/2 but not NF-kappa B/anti-apoptotic factors pathway. NF-kappa B inhibitor attenuated BST-2-mediated tumorigenesis of HCC.Conclusions: Our findings illuminate the novel function of BST-2 as an oncogene of HBV-associated HCC, and highlight the novel relationship of N-glycosylation of BST-2 in regulating HCC tumorigenesis in vitro.
更多
查看译文
关键词
Hepatitis B virus (HBV), hepatocellular carcinoma (HCC), bone marrow stromal cell antigen 2 (BST-2), N-glycosylation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要