A Comparison Of Nutritional Value Of Native And Alien Food Plants For A Critically Endangered Island Flying-Fox

PLOS ONE(2021)

引用 2|浏览1
暂无评分
摘要
Habitat loss and alteration are two of the biggest threats facing insular flying-foxes. Altered habitats are often re-vegetated with introduced or domestic plant species on which flying-foxes may forage. However, these alien food plants may not meet the nutritional requirements of flying-foxes. The critically endangered Christmas Island flying-fox (CIFF; Pteropus natalis) is subject to habitat alteration and the introduction of alien food plants, and therefore is a good model species to evaluate the potential impact of alien plant species on insular flying-foxes. In this study, we evaluated nutritional content of native food plants to determine how flying-foxes historically met their nutritional requirements. Furthermore, we compared the nutritional content of native and alien fruits to predict possible impacts of alien plants on insular flying-foxes. Native and alien fruits and flowers, and native foliage (leaves, petals, and petioles) commonly consumed by the CIFF were collected and evaluated for soluble sugars, crude protein, non-fiber carbohydrates, and nine minerals. Evaluation of native food plants suggests that flying-foxes meet energy requirements by consuming fruit and nectar. However, fruit and nectar are low in protein and essential minerals required for demanding life periods; therefore, flying-foxes likely supplement their diets with pollen and foliage. Thus, flying-foxes require a diverse array of plants to meet their nutritional requirements. Compared to native fruits, alien fruits contained significantly higher non-fiber carbohydrates, and this may provide an important energy source, particularly from species that bear fruit year-round. Median mineral concentrations in alien fruit species, however, were deficient compared to native fruits, suggesting major (or even seasonal) shifts in the proportion of alien species in the CIFF diet could lead to nutritional imbalances. This study confirms the need to quantify nutritional parameters in addition to feeding ecology when evaluating habitat quality to inform conservation actions that can be applied both locally and globally.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要