Deterministic And Stochastic Cellular Mechanisms Contributing To Carbon Monoxide Induced Ventricular Arrhythmias

FRONTIERS IN PHARMACOLOGY(2021)

引用 8|浏览4
暂无评分
摘要
Chronic exposure to low levels of Carbon Monoxide is associated with an increased risk of cardiac arrhythmia. Microelectrode recordings from rat and guinea pig single isolated ventricular myocytes exposed to CO releasing molecule CORM-2 and excited at 0.2/s show repolarisation changes that develop over hundreds of seconds: action potential prolongation by delayed repolarisation, EADs, multiple EADs and oscillations around the plateau, leading to irreversible repolarisation failure. The measured direct effects of CO on currents in these cells, and ion channels expressed in mammalian systems showed an increase in prolonged late Na+, and a decrease in the maximal T- and L-type Ca++. peak and late Na+, ultra-rapid delayed, delayed rectifier, and the inward rectifier K+ currents. Incorporation of these CO induced changes in maximal currents in ventricular cell models; (Gattoni et al., J. Physiol., 2016, 594, 4193-4224) (rat) and (Luo and Rudy, Circ. Res., 1994, 74, 1071-1096) (guinea-pig) and human endo-, mid-myo- and epi-cardial (O'Hara et al., PLoS Comput. Biol., 2011, 7, e1002061) models, by changes in maximal ionic conductance reproduces these repolarisation abnormalities. Simulations of cell populations with Gaussian distributions of maximal conductance parameters predict a CO induced increase in APD and its variability. Incorporation of these predicted CO induced conductance changes in human ventricular cell electrophysiology into ventricular tissue and wall models give changes in indices for the probability of the initiation of re-entrant arrhythmia.
更多
查看译文
关键词
carbon monoxide, ion channels, arrhythmias, modeling, potassium channels, action potential duration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要