Protein Kinase D-Dependent Downregulation Of Immediate Early Genes Through Class Iia Histone Deacetylases In Acute Lymphoblastic Leukemia

MOLECULAR CANCER RESEARCH(2021)

引用 1|浏览13
暂无评分
摘要
Acute lymphoblastic leukemia (ALL) is a leading cause of cancer-related death in children and adolescents, and cure rates for relapsed/rcfractory ALL remain dismal, highlighting the need for novel targeted therapies. To identify genome-wide metabolic-stress regulated genes, we used RNA-sequencing in ALL cells treated with AICAR, an AMPK activator. RNA-sequencing identified the immediate early genes (IEGs) as a subset of genes downregulated by AICAR. We show that AICAR-induced IEGs downregulation was blocked by an adenosine uptake inhibitor indicating AICAR was responsible for IEGs reprogramming. Using pharmacologic and genetic models we established this mechanism was AMPK-independent. Further investigations using kinasc assays, PKD/PKC inhibitors and rescue experiments, demonstrated that AICAR directly inhibited PKD kinase activity and identified PKD as responsible for IEGs downregulation. Mechanistically, PKD inhibition suppressed phosphorylation and nuclear export of dass Ila HDACs, which lowered histone H3 acetylation and decreased NFIcB(p65) recruitment to IEGs promoters. Finally, PKD inhibition induced apoptosis via DUSP1/DUSP6 downregulation eliciting a DNA damage response. More importantly, ALL patient cells exhibited the same PKD-HDACs-IEGs-mediated mechanism. As proof of principle of the therapeutic potential of targeting PKD, we established the in vivo relevance of our findings using an NSG ALL mouse model. In conclusion, we identified a previously unreported PKD-dependent survival mechanism in response to AICAR-induced cellular stress in ALL through regulation of DUSPs and IEGs' expression.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要