Three-dimensional assessment of brain arterial compliance: Technical development, comparison with aortic pulse wave velocity, and age effect.

MAGNETIC RESONANCE IN MEDICINE(2021)

引用 2|浏览4
暂无评分
摘要
PURPOSE:The ability to measure cerebral vascular compliance (VC) is important in the evaluation of vascular diseases. Additionally, quantification of arterial wall pulsation in the brain may be useful for understanding the driving force of the recently discovered glymphatic system. Our goal is to develop an MRI technique to measure VC and arterial wall pulsation in major intracranial vessels. METHODS:A total of 17 healthy subjects were studied on a 3T MRI system. The technique, called VaCom-PCASL, uses pseudo-continuous arterial spin labeling (PCASL) to obtain pure blood vessel signal, uses a 3D radial acquisition, and applies a golden-angle radial sparse parallel (GRASP) algorithm for image reconstruction. The k-space data were retrospectively sorted into different cardiac phases. The GRASP algorithm allows the reconstruction of 5D (three spatial dimensions, one control/label dimension, and one cardiac-phase dimension) data simultaneously. The proposed technique was optimized in terms of reconstruction parameters and labeling duration. Intracranial VC was compared with aortic pulse wave velocity measured with phase-contrast MRI. Age differences in VC were studied. RESULTS:The VaCom-PCASL technique using 10 cardiac phases and GRASP sparsity constraints of λlabel/control = 0.05 and λcardiac = 0.05 provided the highest contrast-to-noise ratio. A labeling duration of 800 ms was found to yield signals comparable to those of longer duration (P > .2), whereas 400 ms yielded significant overestimation (P < .005). A significant correlation was observed between intracranial VC and aortic pulse wave velocity (r = -0.73, P = .038, N = 8). Vascular compliance in the older group was lower than that in the younger group. CONCLUSION:The VaCom-PCASL-MRI technique represents a promising approach for noninvasive assessment of arterial stiffness and pulsatility.
更多
查看译文
关键词
aging, ASL, GRASP, pulsation, pulse wave velocity, vascular compliance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要