Multifunctional Two-Dimensional Conjugated Materials For Dopant-Free Perovskite Solar Cells With Efficiency Exceeding 22%

ACS ENERGY LETTERS(2021)

引用 88|浏览2
暂无评分
摘要
Replacing the dominated hole transport material (HTM), doped Spiro-OMeTAD, in state-of-the-art perovskite solar cells (PSCs) is a challenge but an urgent issue for commercialization of this technology. Here, a solution-processable two-dimensional (2D) polymer HTM, namely, 2DP-TDB, which featuring with extended pi-electron delocalization into the two-dimensions, has been successfully developed. It is found that 2DP-TDB shows multifunctional characteristics, such as dominant face-on packing orientation, good charge transport properties, efficient perovskite surface passivation capability. and hydrophobicity. As a result, planar n-i-p structured PSCs employing 2DP-TDB as dopant-free HTM exhibit a high efficiency of 21.53%, which is much larger than that using a control 2D small molecule (TB-DPP) (11.61%). Importantly, after further optimization of the perovskite film with the formamidine-based spacer, the devices based on dopant-free 2DP-TDB HTM show a champion efficiency as high as 22.17%. This work offers a fundamental strategy by developing 2D conjugated polymer HTMs for dopant-free PSCs with both high efficiency and stability.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要