Improving The Solar Reliability Factor Of A Dual-Axis Solar Tracking System Using Energy-Efficient Testing Solutions

ENERGIES(2021)

引用 2|浏览1
暂无评分
摘要
This paper presents an improved mathematical model for calculating the solar test factor (STF) and solar reliability factor (SRF) of a photovoltaic (PV) automated equipment. By employing a unified metrics system and a combined testing suite encompassing various energy-efficient testing techniques, the aim of this paper is to determine a general fault coverage and improve the global SRF of a closed-loop dual-axis solar tracking system. Accelerated testing coupled with reliability analysis are essential tools for assessing the performance of modern solar tracking devices since PV system malfunctioning is directly connected to economic loss, which is an important aspect for the solar energy domain. The experimental results show that the unified metrics system is potentially suitable for assessing the reliability evaluation of many types of solar tracking systems. Additionally, the proposed combined testing platform proves efficient regarding fault coverage (overall coverage of 66.35% for all test scenarios), test time (an average of 275 min for 2864 test cycles), and power consumption (zero costs regarding electricity consumption for all considered test cases) points of view.
更多
查看译文
关键词
white-box testing, online built-in self-test, flying probe in-circuit testing, jtag boundary scan, solar trackers, solar reliability factor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要