Binary Organic Nanoparticles With Enhanced Reactive Oxygen Species Generation Capability For Photodynamic Therapy

JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES(2021)

引用 1|浏览6
暂无评分
摘要
Photodynamic therapy (PDT) takes advantage of photosensitizers (PSs) to generate reactive oxygen species (ROS) for cell killing when excited by light. It has been widely used in clinic for therapy of multiple cancers. Currently, all the FDA-approved PSs, including porphyrin, are all small organic molecules, suffering from aggregation-caused quenching (ACQ) issues in biological environment and lacking tumor targeting capability. Nanoparticles (NPs) with size between 20nm and 200nm possess tumor targeting capability due to the enhanced permeability and retention (EPR) effect. It is urgent to develop a new strategy to form clinical-approved-PSs-based NPs with improved ROS generation capability. In this study, we report a strategy to overwhelm the ACQ of porphyrin by doping it with a type of aggregation-induced emission (AIE) luminogen to produce a binary NPs with high biocompatibility, and enhanced fluorescence and ROS generation capability. Such NPs can be readily synthesized by mixing a porphyrin derivative, Ce6 with a typical AIE luminogen, TPE-Br. Here, our experimental results have demonstrated the feasibility and effectiveness of this strategy, endowing it a great potential in clinical applications.
更多
查看译文
关键词
Aggregation-induced emission, photodynamic therapy, organic nanoparticles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要