Engineering Unique Fe(Sexs1-X)(2) Nanorod Bundles For Boosting Oxygen Evolution Reaction

CHEMICAL ENGINEERING JOURNAL(2021)

引用 26|浏览1
暂无评分
摘要
Fe-based electrocatalysts have attracted significant attention on account of the possibility for the realization of low-cost, high efficiency, and stable oxygen evolution reaction (OER) in alkaline solution. In this study, we present a new type of Fe(SexS1-x)(2) nanorod bundles, which were successfully synthesized via a simple one-step hydrothermal method. We further demonstrate the applicability of these structures as electrocatalysts for OER application. We reveal that the incorporation of S into FeSe2 cause lattice strain and lattice defect, which is beneficial to expose more active sites and optimize the electronic structure, and hence the Fe(SexS1-x)(2) composites display favorable catalytic for OER. More interestingly, the as-prepared Fe(Se0.5S0.5)(2) catalyst exhibits the best OER performance with an overpotential at 10 mA.cm(-2) of 247 mV, a low tafel slope of 54 mV/dec, and excellent catalytic stability. This work is expected to open a new door to discover other Fe-based materials as efficient catalysts for renewable energy.
更多
查看译文
关键词
Fe(SexS1-x)(2) nanorod, Lattice strain, Lattice defect, Electronic structure, Oxygen evolution reaction (OER)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要