Blockwise Recursive Moore–Penrose Inverse for Network Learning

IEEE Transactions on Systems, Man, and Cybernetics: Systems(2022)

引用 8|浏览62
暂无评分
摘要
Training neural networks with the Moore–Penrose (MP) inverse has recently gained attention in view of its noniterative training nature. However, a significant drawback of learning based on the MP inverse is that the computational memory consumption grows along with the size of a dataset. In this article, based on the partitioning of the MP inverse, we propose a blockwise recursive MP inverse formulation (BRMP) for network learning with low-memory property while preserving its training effectiveness. The BRMP is an equivalent formulation to its batchwise counterpart since neither approximation nor assumption is made in the derivation process. Our further exploration of this recursive method leads to a switching structure among three different scenarios. This structure also reveals that the well-known recursive least squares method is a special case of our proposed technique. Subsequently, we apply BRMP to the training of radial basis function networks as well as multilayer perceptrons. The experimental validation covers both regression and classification tasks.
更多
查看译文
关键词
Blockwise recursive Moore–Penrose (MP) inverse,memory reduction,switching structure,training neural networks (NNs)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要