Spatial distribution of health risks for residents located close to solvent-consuming industrial VOC emission sources

Journal of Environmental Sciences(2021)

引用 10|浏览8
暂无评分
摘要
Emissions derived from the consumption of organic solvents have been proven to be the primary industrial source of volatile organic compounds (VOCs). In conjunction with epidemiologic studies, water-based paints (WBPs) and solvent-based paints (SBPs) were selected as representatives of newly developed solvents and traditional solvents, respectively, to simulate the effects of consuming solvents emitted during industrial production. And non-carcinogenic and carcinogenic risks to residents near emission sources were studied in detail. The results showed that the spatial distribution of health risks varied with meteorological conditions and type of emission source, and the prevailing wind direction strongly affected the distribution range and shape of the influenced area. The areas of influence maximized on heavy-polluting days for both WBP and SBP emission sources with the total span reaching 804 m and 16 km, respectively; meanwhile, the areas of influence for carcinogenic risk resulting from WBP emission sources were 1.2 and 2.3 times greater than those measured on fine and rainy days, respectively, and 1.8 and 2.9 times greater for SBP emission sources. Compared with WBPs, the total spans of negatively influenced regions resulting from SBP emission sources were 10.4, 12.5 and 19.9 times greater on fine, rainy and heavy-polluting days, respectively. Therefore, carcinogenic risk was the dominant health threat for populations residing close to solvent-consuming industrial emission sources. The findings suggest that newly developed solvents are capable of significantly reducing consequent health threats, nevertheless, they could still pose occasional threats to nearby residents under specific meteorological conditions.
更多
查看译文
关键词
Secondary receptor,Spatial distribution,Solvent-consuming emission source,Potential health risk,Acquirable risk-free region
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要