Surface Functionalization of Doxorubicin loaded MCM-41 Mesoporous Silica Nanoparticles by 3-Aminopropyltriethoxysilane for Selective Anticancer 9 Effect on A549 and A549/DOX Cells

JOURNAL OF ELECTRONIC MATERIALS(2021)

引用 7|浏览2
暂无评分
摘要
In this study, MCM-41 mesoporous silica nanoparticles were successfully synthesized by the condensation of a tetraorthosilicate precursor on a template self-assembled by cetyltrimethylammonium bromide in alkaline. The small-angle x-ray diffraction patterns of MCM-41 indicate that silica nanoparticles possess hexagonal structures with a high degree of structural ordering. Transmission electron microscopy images show that the size of the MCM-41 particles is around 100-120 nm, and the pore sizes range from 2 nm to 4 nm. In addition, the specific surface area of MCM-41 obtained by Brunauer–Emmett–Teller analysis is as high as 987 m 2 .g −1 and the pore size extracted from nitrogen physical adsorption isotherms is in accordance with the TEM result. Thermogravimetric analysis, Fourier-transform infrared spectroscopy, Zeta potential measurements and photoluminescence measurements show that 3-aminopropyltriethoxysilane (APTES) and doxorubicin were grafted and loaded successfully onto MCM-41 nanoparticles. An assay on fibroblasts, A549 and doxorubicin-resistant A549/DOX cells indicates that the prepared MCM41 grafting APTES nanoparticles are safe to normal cells and toxic to cancer cells in vitro . Graphic abstract
更多
查看译文
关键词
Mesoporous silica nanoparticles,MCM-41,doxorubicin,A549,A549/DOX
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要