Novel delay-partitioning approaches to stability analysis for uncertain Lur’e systems with time-varying delays

Journal of the Franklin Institute(2021)

引用 9|浏览16
暂无评分
摘要
This work deals with the problem of absolute stability analysis for a class of uncertain Lur’e systems with time-varying delays. Novel delay-partitioning approaches are presented, which are dividing the variation interval of the delay into three subintervals. Some new augment Lyapunov–Krasovskii functionals (LKFs) are defined on each of the obtained subintervals which can efficiently make use of the information of the delay and relate to the reciprocally convex combination technique and the Wirtinger-based integral inequality method. Several improved delay-dependent criteria are derived in terms of the linear matrix inequalities (LMIs). The merit of the proposed criteria lies in their less conservativeness and lower numerical complexity than relative literature. Two numerical examples are included to illustrate the effectiveness and the improvement of the proposed method.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要